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According to the Lighthill acoustic analogy, the sound induced by a region of 
turbulence is the same as that due to an equivalent distribution of quadrupole 
sources within the fluid. It is known that the presence of scattering bodies 
situated near such multipoles can convert some of their intense near field energy 
into the form of sound waves whose amplitude is far greater than that of the 
incident field. Calculations are here presented to determine the extent of this 
conversion, for hard and soft bodies of various shapes, making use of the recipro- 
cal theorem to recast the problem into one of finding the field, near the obstacle, 
induced by an incident plane wave. If the obstacle is small compared with a 
wavelength, then its presence is equivalent to an additional dipole (or source) 
whose greater efficiency as a sound radiator implies that the familiar intensity 
law I cc U8, for far field intensity 1 against typical turbulence velocity U for an 
unbounded flow, is replaced by I cc U6 (or I cc U4) for a hard (or soft) body. 
For the situation where the scatterer is large compared with wavelength, the 
prototype problem of a wedge of exterior angle (p/q)n is shown to yield an 
intensity law I cc U4+2qjP for both hard and soft surfaces. This result is shown 
to hold for the more general ‘wedge-like ’ surfaces, whose dimensions are large 
scale and whose edges may be smoothed out on a small scale, compared with 
wavelength. The method used involves the matching of an incompressible flow, 
on the fine scales typical of the edge geometry, to an outer flow determined by 
the large scale features of the surface. Favourable comparisons are made with 
previous results pertaining to the two-dimensional semi-infinite duct and to the 
half-plate of finite thickness. 

1. Introduction 
According to the Lighthill (1952) theory of aerodynamic noise, a region of 

turbulence in an otherwise quiescent medium is acoustically equivalent to a 
distribut,ion of quadrupole sources of strength Tii ,  proportional to the Reynolds 
stress terms puiui, wherein p denotes density and ui the turbulence velocity. 
The quadrupole nature of this equivalent source distribution has been shown by 
Lighthill to be of great significance, since such a muItipole distribution is 
relatively inefficient, as a means of propagating sound waves to large distances, 
compared with dipole and even more efficient monopole sources. This property 
is due essentially to the tendency of cancellation between the constituent 
monopoles that form a multipole source, and has led to the formulation of 
Lighthill’s celebrated ‘ U s  law’ giving the functional form of the intensity 
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I K Ua of sound propagating towards infinity, in terms of the typical velocity 
fluctuation U of turbulence in an unbounded medium. Since U is typically 
very small, compared with wave speed c ,  the high index eight that occurs in 
the intensity law reveals the inefficiency of turbulence as a producer of sound. 

It is now well known that the presence of a scattering obstacle can cause a 
considerable increase in the intensity of the noise field. For such a body is 
acoustically equivalent to a surface layer of monopoles and dipoles, these 
being potentially more efficient producers of far field noise than the incident 
quadrupole source distribution. The extent to which this increase of sound 
energy is effected depends crucially upon the boundary conditions associated 
with the scattering body, and upon its shape. Of the results that have been 
obtained to date, those due to Curle (1955), Powell (1960), and Ffowcs Williams 
& Hall (1970) are relevant to the present note and are now described briefly. 

The effect of surfaces on aerodynamic noise was first discussed by Curle 
(1955) who showed that the presence of a ‘hard’ (i.e. rigid) body is equivalent 
to a layer of dipoles over its surface. In  particular, if the obstacle is finite, with 
dimensions small compared with a typical wavelength, then the surface dipoles 
are effectively in phase and add together to produce an equivalent single dipole 
whose strength is proportional to the total force on the body. This analysis 
predicts a sound field larger than that due to the incident quadrupoles alone, 
with an intensity law 1 K U6 in place of Lighthill’s eighth power law; a similar 
argument for t h e  ‘soft ’ surface, on which the pressure fluctuation is zero, shows 
the presence of the obstacle to be equivalent to a monopole source, with intensity 
I K u4. 

Powell (1960) has pointed out that there is no such enhancement of the sound 
if the obstacle is a hard (or soft) infinite plane. For such a surface is obviously 
equivalent to  an ‘image’ distribution of quadrupoles of equal (or opposite) 
strength to the incident quadrupoles, and the Us law holds for the scattered field. 

The results of Ffowcs Williams & Hall (lWO), on the other hand, show that a 
semi-infinite plate of zero thickness enhances the sound field of quadrupoles near 
its edge to an extent far greater than that predicted by the general theory of 
Curle. Specifically, an intensity law I K U5 is established for either the hard or 
soft boundary condition. 

Evidently the general arguments based on equivalent monopole and dipole 
source layers can be misleading without more specific details regarding their 
strength, if the scattering surface is large compared with wavelength; for such 
arguments lead to an overestimate for the scattered field in the case of the 
infinite plane or soft semi-infinite plane, and an underestimate for the hard, 
semi-infinite plane. The aim of the present work is to predict the form of the 
far field scattered by hard, or soft, obstacles of various shapes. The problem is 
posed as one of diffraction theory, with an incident quadrupole field of strength 
assumed known, and it is required to calculate the scattered field at large dis- 
tance from the disturbance. 

It is worthwhile to emphasize exactly the questions that this kind of work 
aims to answer. We must stress that it is quite impossible to predict in general 
what would happen if an obstacle were suddenly placed in a laminar or turbulent 
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flow, even to the extent of establishing an order of magnitude for the increase of 
sound power. One important question, however, can quite definitely be answered. 
The fundamental Lighthill theory deals with a region of turbulence in an un- 
bounded medium and predicts the sound power in terms of the stress tensor Ti,. 
The present work assumes similarly that we can measure Ti j  for the flow in the 
presence of certain given boundaries, and is concerned with the effect of such 
surfaces upon the sound field produced by the quadrupole distribution of 
density proportional to Ti,. In particular, it  is shown that it is quite inadequate 
in most cases to calculate merely the ‘incident field’, by evaluating the Lighthill 
integral over the source region. 

The problem is simplified by assuming time periodic motions throughout, 
with angular frequency w ;  the general time dependence can, in principle, be 
generated by superposition of periodic solutions according to the usual Fourier 
transformation. Working with the velocity potential, the periodic nature is 
implied by writing the potential in the form %[$(x) exp ( - iwt ) ]  and the notation 
q5i and $ is used to denote the incident and scattered potentials, with total field 
given by 9 = $i + $. The wave equation for $reduces to the Helmholtz equation 

(V2+ k2)  $(x) = 0, (1.1) 

where k = w/c  is the acoustic wave-number, c the wave speed; equation (1.1) 
has to be solved subject to the appropriate boundary condition on the scattering 
surface S, and an outgoing wave condition a t  infinity. The wave motion is 
forced by an incident field corresponding to a distribution of quadrupole sources, 
which can be generated in terms of simple monopole sources as follows. 

An incident monopole point source situated at the point y , ( j  = 1, 2, 3) has 

the potential &ource) = m eikR/R, (1.2) 

where m is a constant and R = Ix, - y,l is the dista.nce from source at  y ,  to 
observer at  2,. A dipole of strength, or moment, d, = ml, is formed by placing 
a source of strength - m a t  y ,  together with a source of strength + m at a neigh- 
bouring point y,+l,, where the separation 1 = 1Z,1 is small compared with 
wavelength. Thus in the limit of small kl, the potential is given by direct differen- 

where the double suffix summation convention is understood, d = Idi/ = ml and 
8 is the angle between the vectors d, and (xi - yj). Similarly, an incident quad- 
rupole of strength Q j k  has potential of the form 

(1.4) 

q5Ldipole) N -dikcosOeikR/R (kR 9 l), (1.5) 

#iwad) = &jk (a2/ayja!/k) (eikR/R).  

A t  large values of R = Ixi - y j l ,  the expression (1.3) takes the form 

and this ‘far-field’ approximation gives a measure of the energy radiated 
towards infinity in the form of sound waves. It is seen from (1.2) and (1.5) that 
the ratio of far fields induced by source and dipole is given by 

~ p p o l e )  /q5 (sourceq kzcose ( k ~  9 1, kz .g 11, (1.6) 
37-2 
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which is small since kl is small; thus the source (of order unity with respect to 
wave-number) is more efficient than the dipole (of order k l ) ,  this being by a 
similar argument more efficient than a quadrupole (of order k2Z2), and so on. 

With the aid of these preliminary results, the general effect of small scattering 
bodies upon an incident quadrupole sound field is easily seen. An elementary 
application of Green’s theorem leads to the identity, the ‘ Helmholtz formula’, 
that 

evaluated over the scattering surface S, where x is any point outside S, n‘ is 
the normal into the fluid and R = I X  - x’I . The integral term, which represents 
the scattered potential $(x) due to the presence of the surface, is seen to be 
equivalent to a layer of dipoles of density proportional to $(x’) and a layer of 
sources of strength proportional to a$/an’. In particula.r, if the body is hard, then 
a$/an‘ vanishes to leave only a distribution of dipoles. 

Expanding the integral of (1.7) for large values of 1x1 = r,  in order to ascertain 
the far-field amplitude, we see that for the hard boundary condition, for example, 

as r = /xJ+m, 

and provided the maximum diameter 2a of S is much less than a wavelength, 
we have 

ik eikr x 
$(x) N 477 r r . S ,  n’$o(x’)dx’ (kr % 1, ka 4 l ) ,  (1.9) 

where $o (x) denotes the limit of $ as k- t  0, and corresponds to an incompressible 
flow problem near the rigid surface S. 

The explicit determination of the low wave-number potential $ N $o follows 
a procedure familiar in diffraction theory (see Morse & Feshbach 1953): to 
obtain $o and higher approximations if required, one formally expands Q, and 
Qi as series of the form 

$ = $ o + i k $ , + ( i k ) 2 $ 2 / 2 ! + . . .  (klxl < 1), 

substitutes into the integral identity (1.7) and equates powers of k. For the hard 
scatterer, one thus obtains 

which represents a simple incompressible flow problem. A similar analysis is 
available also for the soft surface. 

Formula (1.9) shows that the scattered potential at  large distance is like 
that due to a dipole whose strength is proportional to the total force on S, this 
being calculated as though the flow field in the vicinity of S were incompressible. 
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The dipole nature of the scattered field holds for any incident field and the large 
effect of rigid bodies upon aerodynamic noise is clear. For if the incident field 
q5+ of formula (1.7) is quadrupole in nature, then i t  is greatly exceeded by the 
more efficient dipole radiation generated by the scatterer, this being essentially 
the result due to Curle (1955) in a slightly different context. Evidently the 
presence of a foreign body transfers some of the intense near-field energy 
associated with higher-order multipoles into the form of sound waves. 

To complete the estimate (1.9) i t  is required to calculate the function $o in 
detail; apart from the desirability of obtaining an explicit expression for the 
amplitude of the far field, it  is important to verify that the integral of (1.9) is 
non-zero, in order that the estimate (1.9) is a sensible one. 

It is shown in $ 2  how the far-field limit, 1x1 +a, can be taken at  a very early 
stage in the calculations, by appealing to the reciprocal theorem, which states 
that monopole source point, y and observation point x may be interchanged. 
Thus one may imagine the source to be at x with observer at  y, whence in the 
limit 1x1 +a the problem reduces to that of finding the potential at y due to a 
plane wave propagating from the direction of x. In the case of small klyl of 
interest here, the Helmholtz equation, with respect to y, reduces to the Laplace 
equation and it remains to solve an appropriate incompressible flow problem. 
A simple illustrative example is given for the case of scattering by a soft, or hard, 
sphere. 

The present approach is well suited for the more difficult case of scattering by 
bodies that are large compared with wavelength. It is clear that the step from 
formula (1.8) to (1.9) is no longer valid in this circumstance, and the simple 
general theory is invalid. A prototype problem of this type has been treated by 
Ffowcs Williams & Hall (1970), who solve the problem of a quadrupole distri- 
bution near the sharp edge of a hard, or soft, semi-infinite plate of zero thickness. 
One might anticipate that such a sharp edge will provide an efficient mechanism 
for transforming the near-field energy of quadrupoles into the form of sound 
waves and this intuitive idea is well established by their analysis. The known 
Green’sfunction of the problem is utilized and leads to the result that quadrupoles 
close to the edge, with axes perpendicular to the edge, are greatly enhanced by 
the presence of the half-plate: if ro denotes the distance of a quadrupole from the 
edge, then the ratio of scattered to incident potentials, a t  large distance, is of 
the order (krJ-8, and the increase in sound propagated is far in excess of that 
predicted by the general theory. The effect of a more general (impedance) 
boundary condition on the half-plate has recently been discussed by Crighton & 
Leppington (1970). 

Using thereciprocal theorem in the manner outlined above, a simple argument 
is presented in $ 3  to obtain. the essentials of the results of Ffowcs Williams & 
Hall for the half plane, and for a wedge of more general exterior angle pm/q, 
1 < p / q  < 2, for which the potential is increased by the factor (kro)-2+@p. 1,- 
view of these results for scattering by sharp edges it is natural to ask whether 
the large increase in sound is due entirely to the singularity in curvature at  
the edge, or to the large extent of the scattering surface, the conclusion of the 
present work being that the latter feature is an essential property. 
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The effect of finiteness is considered with special reference to the circular 
disk, since this seems the simplest geometry that involves a finite sharp edge; 
it is proposed that the edge induces an increase of order (kr,)-3 only if the disk 
is large compared with wavelength, whereas the general theory of Curle is 
appropriate if the disk is smaller than a wavelength. 

Finally it is conjectured that the results for a wedge remain essentially un- 
changed if the sharp end is rounded off, provided this smoothing takes place on 
a scale small compared with wavelength. In  support of this hypothesis, f* <xvour- 
able comparisons are made with two relevant problems for which exact results 
are available. 

Moreover, a simple closed form expression is indicated for one problem where 
Jones’s (1953) extension of the Wiener-Hopf method provides a solution only 
through the numerical solution of an infinite system of linear equations with 
complicated coefficients. The present work provides a solution for these equations, 
without recourse to numerical computations, and may also be capable of exten- 
sions to deal with situations where no current modification of the Wiener-Hopf 
technique is a possible method of attack. 

2. Reciprocal theorem and scattering by small bodies 
An incident source, with potential q$ given by ( l . Z ) ,  (1.3) or (1.4), is situated 

at  a point y near a scattering surface S, and it is required to find the scattered 
field $(x; y) at great distance from the disturbance. An effective method for 
taking the far-field limit, 1x1 = r+w, a t  an early stage in the calculations is 
suggested with reference to the reciprocal theorem which states that under fa,irly 
general boundary conditions, including those for both soft and hard bodies 
considered in the present work, the potential at x due to a monopole source a t  
y is precisely the same as the potential a t  y due to a source at  X. For higher- 
order multipoles at y with observer at  x, the problem is therefore equivalent to 
that of a monopole at  x with an observer measuring the appropriate deriv. c~ t’ ives 
at  y. 

In the limit 1x1 = r+w, which determines the far field, it is seen that the 
incident field of the problem reduces to a plane wave of suitable amplitude, 
propagating from the direction of x. To be specific, ifa source of incident potential 
exp {iklx - yl}/lx - yI is situated at  x, then as 1x1 = r --f co, with y fixed, we have 

#i N (eikr/r) eika.y, 

where a = - x / r  is the unit vector in the direction from x to the origin, and this 
expression represents a plane wave of amplitude (eikr/r) in the direction of a. 
Thus we are led to consider the problem of finding the scattered potential $(y) 
at y induced by an incident plane wave of potential 

wherein the amplitude A = eikr/r contains the dependence on x and is considered 
a fixed parameter. 

The function $ so determined gives the far field at  x induced by a monopole 
at  y; the corresponding far field due to multipole sources at  y is then obtained by 

q5i = A eika.y, (2.1) 
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simply differentiating with respect to the point y. Although this procedure does 
not yield solutions that could not be obtained by other means, it has the distinct 
advantage that the ‘far-field’ limit IxI-tco is taken at  the outset, and the 
potential corresponding to an incident plane wave is, furthermore, much easier 
to handle than that of an incident source. 

Our attention in the work that follows is concerned with sound scattered by 
obstacles that are placed in the ‘near field’ of multipole sources, that is, within 
a fraction of a wavelength, in order to calculate the extent to which the intense 
near-field energy of such sources is converted into the form of sound waves. 
The present formulation is ideally suited for this purpose, since in terms of the 
reciprocal problem we have only to calculate the potential field very close to 
the body (klyl < 1)  due to an incident plane wave of potential given by (2.1). 
Under the ‘near-field’ approximation klyl < 1 it is natural to expect that the 
governing Helmholtz equation (1 .1 )  reduces to the Laplace equation, in a first 
approximation, and the potential at the points y of interest close to the obstacle 
is therefore the solution of an appropriate incompressible flow problem. 

These two simple ideas, concerning reciprocity and the incompressible nature 
of the solution at  points y close to the scatterer, provide the basis for all that 
follows. 

The analysis is straightforward for bodies of dimension small compared with 
wavelength, and explicit details are provided below for the illustrative example 
of a sphere of radius a ,  with ka < 1. If the scatterer is large, on the other hand, 
then the task of specifying the incompressible flow problem appropriate to the 
near-field region close to the body is not quite so simple and this question is 
deferred until a later section. 

Turning to the problem of scattering by a small sphere, the body is taken to 
be acoustically soft, whence # = 0 on its surface. If a monopole source is situated 
at y, then the scattered potential @ has a far field that is shown above to  be 
determined in terms of the potential @(y) scattered by the plane wave given by 

Under the approximation kr, = klyl < 1 the governing Helmholtz equation 
(1.1) reduces to the Laplace equation for +, and the boundary condition of zero 
totaI potential on the sphere requires @ = - A  eikor.y N - A ,  whence 

(2.1). 

$, = - A  on the surface ro = a. (2.2) 

Finally it is required that 
$,-to as r,+co, 

and the specifications for @, are complete. It is perhaps not entirely obvious 
that the condition (2.3) at infinity is appropriate since the approximation 
@ - @, is valid only in the near field, kr, -g 1, but in the context of the more 
general expansion scheme $ N $, + ik@l + . . . outlined in the introduction the 
condition (2.3) is obtained in a systematic manner. 

The solution for $, is elementary and is given by 

$, = -Aa/r,. (2.4) 
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It follows that a source of potential $(isource) = eiklx-yl/lx-y( situated at y 
induces a scattered field whose far field has the asymptotic form 

( 2 . 5 )  

where r = 1x1 and ro = JyJ. By direct differentiation with respect to the source 
point y it is seen that a radial quadrupole of incident potential 

induces a scattered field such that 

(2.7) 

which result can be verified by means of an exact solution for the problem in 
terms of spherical Bessel functions. The estimate (2.7) reveals, in particular, the 
interesting result that the ratio of scattered field to incident field is of the order 

l@/$iI = O(a/rXk2) (kro < 11, (2.8) 

which is very large when a and ro are held fixed and the wave-number k is small. 
Quadrupoles other than the radial one ((2.6), (2.7)) will have scattered field 
negligible compaxed with (2.7), since differentiation of (2.5) in directions other 
than the radial one gives zero, to this order of approximation. 

A similar analysis for the hard sphere shows a scattered field 

in place of (2.5), where 8 is the angle between the vectors x and y. The corres- 
ponding quadrupole field follows by differentiation, whence in particular a 
radial quadrupole (2.6) induces a field such that 

(2.10) 

and I@/$iI = O(a3/r ik) ;  (2.11) 

again the sound field is greatly enhanced by the presence of the sphere. In this 
case, quadrupoles with axes parallel to the surface have a scattered field of 
strength comparable with the radial quadrupole. 

The ideas leading to (2.7)-(2.11) are valid for a body of arbitrary shape, 
provided its dimension is small compared with wavelength, and the important 
k dependence in formulae (2.8), (2.11) remains unchanged; the geometrical 
variables air: and a3/7$ are simply replaced by terms that depend upon details 
of the geometry. Such bodies may even have sharp edges, provided suitable 
edge conditions are applied in order to limit the nature of singularities in such 
regions, since the Helmholtz formula (1 .7 ) ,  basic to the low wave-number 
expansions, remains valid. Furthermore, similar arguments may be used to 
provide explicit details regarding scattering by two-dimensional obstacles such 
as a circular cylinder. 
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These results are essentially those presented by Curle ( 1  955) in a slightly 
different context. For the hard boundary, for example, the increase of potential 
by the large factor (2.11) proportional to l / k  reflects the fact that the presence 
of a rigid body is acoustically equivalent to a layer of dipole sources whose 
strength is proportional to lc and therefore greater than the incident quadrupole 
source of strength O(k2) ;  the soft body, on the other hand, is equivalent to a 
layer of monopole sources of strength O( 1)  compared with the incident quadrupole 
of strength O(k2).  

3. Surfaces with a sharp edge 
Some general conclusions regarding the scattering by bodies of dimensions 

large compared with wavelength can be inferred without difficulty. If the 
obstacle is smooth, for example, in the sense that its minimum radius of curvature 
is large on a wavelength scale, then the potential at  y, induced by a plane wave 
propagating from the direction of x, can readily be estimated on the basis of ray 
theory. In  particular, if the source point y is close to the obstacle (compared 
with local radius) then the far field is effectively zero at points x on the ‘shadow’ 
side of the obstacle, and is represented by an image field for points x on the 
‘illuminated’ side, where the sign of the reflected potential carries a + or - 
sign according as the surface is hard or soft; in this region, the field behaves as 
if the body were an infinite plane. This is in line with the conclusion reached by 
Meecham (1965), although the limits of applicability were not clear in that work. 
The transition region, in the vicinity of the shadow boundary, can be dealt with 
by appealing to results that are available in the literature on the potential at  
points y near the boundary of the shadow cast by an incident plane wave. 

It remains to deal with the case where the body has a ‘sharp edge ’ (where the 
radius is small compared with wavelength) with a nearby source point y, and 
the rest of this work concerns such configurations. 

As a simple prototype problem of this class, the scattering surface is taken 
to be a rigid semi-infinite plane specified by x1 < 0, xz = 0. Suppose a simple 
source of potential eiklx-yl/ Ix - yI is situated at  the point 

y(yl = ro GOS 8,, yz = rosin 8,) 

with an observer at  x(xl = r cos8, xz = rsinO), in the same plane x3 = y3 per- 
pendicular to the edge, measuring the total potential $. According to the 
reciprocal theorem discussed earlier the limiting form of the far field, as 

r = IxI-too, 

is obtained in terms of the potential #(y) = (6, (y) + @(y) a t  y due to an incident 
plane wave 

q5i = A exp { - ilc(y, cos 0 + yz sin O)], 

wherein A = eikrlr is regarded as a fixed parameter and appears throughout 
simply as a constant of proportionality. 

Such a wave problem, the ‘Sommerfeld problem’, is a classical one whose 
exact solution is well-known (cf. Noble 1958). It is now shown that a great deal 

(3.1) 
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of information can be inferred, by appealing to simple incompressible flow 
arguments, without recourse to an exact analysis, this approach being useful 
for more complicated situations for which an exact solution is not available. 

In the vicinity of an edge the potential c$ is continuous whilst its gradient Vq5 
becomes infinite. Thus for a fixed value of the wave-number k ,  the wave equation 
for the scattered potential $(y) takes the approximate form 

V2$(Y) = 0 (kr, 4 11, (3.2) 

and the potential resembles that of an incompressible flow. So far the argument 
is like that presented in an earlier section for finite bodiea, but the great extent 
of the semi-infinite plate under discussion here precludes the possibility of 
assigning a simple boundary condition at  infinity for the equivalent incom- 
pressible flow problem appropriate to the near field kr, < 1. 

The conformal transformation [ = (yl + iy2)k, - 7~ < arg (yl + iy,) < T, maps 
the flow region into the right half [ plane whence it is readily concluded that the 
function satisfying the Laplace equation is of the order r,* as r0+ 0, indepen- 
dently of precise details of the incident field; more specifically, complex variable 
theory reveals the fact that the derivates of $(y) are of the form 

where A is the proportionality constant of (3.1) and B(k) is an unknown complex 
constant that depends on the parameter k and on the angle of incidence 6. 

For a rigid semi-infinite plate, the normal derivative of the total potential is 
zero on the surface, whence a$/ay2 is certainly non-singular as r,-+ 0 for 6, = & n. 
Consistency with the general result (3.3) therefore requires that the phase of 
B(k) must be such that a$/ayl and a@/ay2 take the forms 

a$/ayl - AC(k)  r;Bsin (it),), a$/ay2 - - AC(k)  r,-g cos (p,) 
as kro-+O. (3.4) 

Furthermore, since @ has the same dimensions as the incident potential c$i 
given by (3 .1) ,  it is clear that the constant C ( k )  must take the form Cold, with C, 
depending only on the direction 6 of the incident wave. Thus 

a$/ay, - AC, (6) (k/r,)g sin ( $ 6 0 ) ,  - - AC, (6) (k/ro)4 cos (36,) 

as kr,+O. (3.5) 

It follows at once that a dipole of moment d j  = ( d l ,  d2) ,  with incident field 

induces a scattered potential $(x) whose far field has the form 

(dlsin(g6,)-d,cos(g6,)} (kr,  < 1 ,  kr 9 I), (3.7) 

where r = 1x1 and ro = JyJ .  
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The field due to higher-order multipoles follows at  once by simply differentiat- 
ing with respect to y ,  by means of the identities 

Thus a quadrupole with components Qll, Q12, Q22 situated at  y(r, ,  O,), with 
incident potential 

induces a scattered field $ such that 
kh eikr 

2 4  r 
co (8) - - {(&22- (211) sin W,) + 2&12 cos ( $ 8 0 ) } ,  (3.9) $(quad) 

and it is readily verified that the scattered fields of dipoles and quadrupoles with 
axes parallel to the scattering edge are negligible compared with (3.7) and (3.9). 
In  particular, the expressions (3.8) and (3.9) show that the quadrupole source 
has a scattered field whose magnitude exceeds that of the incident field by the 

factor ($(quaa)/&qUad)I = O{(kr,)-4} (kr, < 1, kr B l), (3.10) 

and the enhancement of the sound measured by an observer at great distance is 
greater than the corresponding result obtained (2.11) for a finite scatterer. 

The simple argument presented above gives the far field for points x that lie 
in the plane containing the source point y and perpendicular to the edge. For 
an observer at  a general position x ,  the solution can readily be generated from 
the special case (3.9) by replacing the plane wave (3.1) by a wave at  oblique 
incidence, i.e. di ( y )  = A exp { - ik (y ,  cos 8 + y2 sin 8 )  cos cp}, 

where A = e-ikQssillp eiklxl/lxI , the essential difference being that the wave- 
number k is replaced by its component in the (yl, y2) plane. Further, the result 
for a volume distribution of quadrupoles near the edge, having density qkj  per 
unit volume is obtained by integrating over the source region which is supposed 
finite. Thus 

$ N C,(8) (kcor. y)i-  2r ~v{(n22-nll)sin(#~o) +2( l12COS(5? , ) )~ iadY (3.11) 

as kr = klxl +CO, evaluated over the source region V ,  and this gives the far 
field at  a point ( r ,  8, 4) with direction cosines (cos 8 cos 'p, sin t9 cos 'p, sin cp) with 
respect to the source region. This result (3.11) has been obtained without any 
need to solve the full boundary-value problem for $; the ro and 8, dependence 
arises from the incompressible nature of the solution near the edge, and the 
important k dependence is given by simple dimensional analysis. 

An exact solution is available for this particular problem, since the exact 
Green's function is known and can be expressed in terms of Fresnel integrals. 
Ffowcs Williams & Hall (1970) have exploited this result to show, in the present 
notation, that 

eikr 

e-& &kr 
$--- sin ($0) (k  cos 'p)&,/ {(Qzz- q11) sin ( 8 8 0 )  + 2Pl2 cos ( ~ W G T +  dY, 

V 
(3.12) 

(27d& 
which verifies (3.11) and provides further the 8 dependence. 
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A result similar to (3.11) obtains readily for the soft half-plane on which 
the total potential is to be zero. In  this case the far field has a similar form, 
with C,(0), sin ($0,) and cos ($0,) replaced by D,(8), cos (80,) and -sin ($0,). 
The ratio of scattered against incident potential is again of the order (kr,)-4 
for a quadrupole at distance r,, from the edge, with axes perpendicular to the 
edge. 

It should perhaps be mentioned here that a great deal of caution must be used 
in interpreting these model results, particularly those of the soft half-plane, 
as limiting cases for more general impedance type boundary conditions. It has 
been shown by Crighton & Leppington (1970) that if the half-plane is not quite 
perfectly soft, with the potential $ = ~[a$/ay,] proportional to the velocity 
discontinuity across the plate, then the limit E - +  0 is a singular one and does not 
yield the same result as the model problem with 8 = 0. The 'nearly hard' plate, 
on the other hand, with a$/ay, = €[$I, has a limit potential as e + 0 that does 
tend uniformly to its model counterpart with a$/ay2 = 0. Such problems with 
more general boundary conditions, thus involving coupled wave motions 
between wsve-bearing surface and fluid, must be treated individually and will 
not be discussed here. 

A further generalization of (3.11) is readily available for a wedge of exterior 
anglepnlq, for any rational number in the range 1 < p / q  6 2. The incompressible 
flow problem that determines the nature of the edge singularity is easily managed 
by means of a conformal transformation that maps the flow region on to a half 
space, and leads t o  the conclusion that the gradient of $ is of the order r ; l f P ' P ,  

whence on dimensional grounds we have 

(3.13) 

and the far field due to quadrupoles with axeg perpendicular to the scattering 
edge is enhanced by the factor 

( $ ( ~ l u a d ) / q 5 ~ ~ r 1 a d ) I  = O{(krn)-2+@~p} (kr,  < 1, kr + 1) ,  (3.14) 

in place of (3.10), for a wedge of exterior angle pn/q with either a soft or hard 
boundary condition. Explicit details regarding the dependence on the source 
position (r,, 8,) can be derived a.long the lines of the analysis leading to (3.5) for 
the half-plate . 

To interpret these results within the flow noise context, an order of magnitude 
argument of the kind discussed in $ 2  shows that the presence of such an edge 
modifies the ' U8 law ' of Lighthill to an extent even greater than that shown in 
$ 2  for finite bodies. The wave-number k: is again replaced by U/lc,  where U is a 
typical turbulence velocity and I a length scale of the turbulence, and the quad- 
rupole strength Q k j ,  proportional to the Reynolds stress puku j ,  is of order pU2, 
It follows that the scattered potential $ for quadrupoles near a half-plate varies 
as $ a UQ,  whence the intensity I varies as 

I OC us (3.15) 



On the scattering of aerodynamic noise 589 

for a soft or hard half-plate, compared with I cc Us for unbounded flows, and 
I cc U6 for rigid bodies of size small compared with wavelength. For a wedge of 
more general exterior angle p,n/q, 1 < p / q  < 2, it is found from (3.13) that 

I cc U4+2q/p ( 1  < p / q  < 2), (3.16) 

and a more acute edge produces more intense scattering, as might be expected. 
In particular, for the half-plate, p/q  = 2, and (3.15) is recovered; for a right- 

I cc P / 3 .  (3.17) 
angled corner, p / q  = #, whence 

The limit p / q  -+ 1 is evidently singular since (3.16) predicts a U6 law, whilst a 
simple image argument for the infinite plane shows that U8 is correct. This is 
not inconsistent, however, since if p/q  is greater than unity, say pfq = 1 +6 
where 6 is arbitrarily small, then the velocity at  the edge is infinite for positive 6, 
but finite if 6 = 0. 

In view of these results for scattering by wedges, it  is natural to ask whether 
the large enhancement of sound is due essentially to the sharpness of the edge 
or to the great extent of the scattering surface. It is proposed here that, although 
the singularity inherent in the ro dependence is due to the edge geometry, the 
important wave-number dependence of (3.14) obtains only if the scatterer is 
large compared with wavelength. This conclusion is reached in the sections that 
follow by giving consideration, firstly, to the effect of finiteness of the scattering 
obstacle, and secondly, to the effect of smoothing out the sharpness of the edge. 

4. Scattering by a circular disk 
In  order to examine the effect of finiteness, with regard to scattering by 

bodies having sharp edges, the rigid circular disk is chosen here as the simplest 
prototype problem of this type. 

With source point y close to the edge and observation point x at great distance 
from the disturbance, the problem again reduces to that of finding the scattered 
potential $(y) due to a plane wave, q5i = Aexp(ika.y), incident upon the 
disk, where A = eikr/r, r = 1x1 and a = -x /r .  Differentiation of $ with respect 
to the point y then gives the far field at x due to higher-order sources a t  y. 

It has been shown in $ 3  how the incompressible nature of the flow in the 
immediate vicinity of an edge implies a singularity in the gradient of the poten- 
tial, and this feature still holds with the present geometry, provided the point 
y is close to the edge compared with both wavelength and with radius a. That 
is, the derivatives of $ take the general form 

Icr, < 1, ro/a < 1, where y1 = ro cos 8, and y2 = rosin 0, measure the source point 
y in the local co-ordinate system, of figure 1, based on the edge. Formula (4.1) 
is similar to (3.4), with the important difference that the unknown scaling 
constant C depends in the present case upon the radius a,  in addition to its 
dependence upon wave-number k and direction of incidence. 
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It follows from (4.1), by direct differentiation with respect to y, that a quad- 
rupole source with incident potential 

induces a scattered potential @(x, y) with far field of the form 

which should be compared with the corresponding formula (3.9) for the rigid 
half-plane. 

FIGURE 1. The polar eo-ordinate system (T ,  8, A)  and the local co-ordinates yl = ro 00s O0, 
yz = r,, sin 8,,, based on the edge. 

The general form (4.3) has been dicta,ted entirely by the incompressible nature 
of the flow near a sharp edge, and a similar result is readily obtained for the case 
of a soft disk. It remains to calculate the form of the multiplicative factor 
C = C ( k ,  a ;  a), this constant having dimensions (length)-*. Unlike the case of a 
semi-infinite plate, it is no longer possible to infer, in general, the functional 
dependence C = Co(a)  kh on simple dimensional grounds, since for the disk 
there are two length scales, l / k  and a, involved in the parameter C .  It is now 
argued that the form of C is essentially different according as the waves are 
short, or long, compared with the disk radius a. 

For waves of length very small compared with radius, i.e. ka 9 1,  it is proposed 
that the field a t  a point y, close to the edge, due to a plane incident wave depends 
to a first approximation only as the local geometry near y. Thus the solution 
will be insensitive to the finite nature of the disk, which may therefore be re- 
placed by the appropriate semi-infinite plane. In  particular, the parameter 
C(k,  a )  will be independent of a, and the far field (4.3) will be of order k4. 

To be more exact, define the spherical co-ordinate system ( r ,  8, A )  of figure 1 
so that the disk is given by r 6 a, 8 = &T, -T 6 h < n, with the source point y 
in the plane h = 0 and close to the edge point r = a, 8 = &T, h = 0. Then a 
quadrupole with incident potential (4.2) is found, by comparison with the half- 
plane result (3.12), to induce a far field of the form 

eikr kt 

r rt  
$(wad) ,., _ _  G(8, A )  exp { - ika sin 8 cos A - tin} 

x {(Q22 - Qi1) sin (goo) + 2Qiz C O ~  ( W o ) } ,  (4.4) 

for kr 9 1, kro < 1, ka 9 1, where G depends only on 8 and A. 
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The approximation is not valid at the 'grazing incidence' condition 

sinesinh = 1; 
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this is to be expected, since the procedure of replacing disk by half-plane is 
invalid in this circumstance. 

If the waves are much larger than the radius, on the other hand, i.e. ka < 1, 
it is clearly inappropriate to disregard the finite extent of the body, and in this 
limit the general theory of Curle, as outlined in the introductory section, seems 
the correct point of view. This procedure replaces the scatterer by an equivalent 
dipole layer whose density is proportional to the surface potential q5, this being 
calculated as though the flow were locally incompressible. In  particular, since 
each dipole has far field proportional to k ,  then the integral of the layer over 
the finite disk has the same property, and the scattered field is proportional to 
wave-number. Explicit details regarding the strength of the far field can readily 
be calculated, if required, in terms of the solution of the limiting problem of a 
multipole near a rigid disk, in an incompressible fluid. Such static potential 
problems are classical, and ca,n be solved by a variety of techniques documented 
by Sneddon (1966). Precise details of the solution are of secondary importance 
in the present analysis, compared with the crucial dependence upon wave- 
number k ,  and it suffices to merely quote the result that the scattered field 
induced by the quadrupole source (4.2) has the form 

for kr B 1, kro < ka < 1, where 8 is the polar angle of figure 1. 
A comparison between the short-wave and long-wave limits (4.4) and (4.5) 

shows the main difference to be in their respective wave-number dependence, 
this being O(k4) for short waves and O ( k )  for long waves. For the case of a soft 
disk, the short wave limit has a far field O(k&) while the long wave limit, obtained 
in terms of an equivalent monopole source layer over the disk, is O(1). In  the 
aerodynamic noise context, the usual identifications Qii = O(pU2),  k = O ( U / b ) ,  
lead to the intensity laws I cc Us, in the short wave limit ka $ 1, for ha,rd or soft 
disks, with I cc U6 or I cc U4 in the long-wave limit ka < 1,  according as the disk 
is hard or soft. 

5. Effect of rounded edge 
The formula (3.14) that pertains to the scattering by a wedge prompts the 

question as to how sharp must be the edge of the result to remain valid; any 
practica.1 situation inevitably involves plates of finite thickness with geometries 
that are smoothed out at  their edges. It is proposed here that the important k 
dependence of (3.14) remains unchanged if the edge is smoothed out over any 
distance that is small compared with wavelength. 

To be definite, attention will be primarily confined to the case of a rigid semi- 
infinite plate of small but finite thickness, the model problem for this geometry 
being the semi-infinite plate of zero thickness described at  length above. Similar 
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remarks hold for any wedge of exterior angle pn-lq, with either soft or hard 
boundary condition. It is supposed from the outset that the width d, of the 
plate and the maximum diameter d, of its smoothed end are very much less than 
a wavelength 2nlk (see figure 2 ) )  i.e. kd 4 1, where d is the greater of d, and d,. 

FIGURE 2.  The length scale d = max (d,, d,) is small compared with wavelength 27rlE. 
The radii R, and R, are such that R, 9 d and R, < 27r/k. 

Turning our attention to the reciprocal problem of finding the potential 
$(y) = q5i (y) + $(y) due to an incident plane wave 

9% (y) = A exp { - i k (y ,  cos O + y, sin O)}, 

with A = eikr/r, it  is convenient to divide the flow region into two overlapping 
domains (figure 2 ) .  In  region I, at distances from the edge that are large com- 
pared with d, it is argued that the potential $(y) fails to distinguish between the 
real geometry and its model counterpart, the half-plate of zero thickness. This 
half-plate solution q5,(y) is known explicitly (cf. Noble 1958), and in particular 
takes the asymptotic form, for points closer than a wavelength from t'he edge, 
given by 

+I (y) = 2A(kr0)4 n-4 (1 - cos 0)4 e-tir sin (QO,) + constant + o(kro)4 

as kro-tO,  (5.1) 

where y1 = r,cos8, and y2 = r,sinO,. The constant is of no consequence since 
we are interested only in derivatives of Q with respect to y. 

In  region 11, consisting of points kr, < 1 that are close to the edge on a wave- 
length scale, the wave equation reduces to the Laplace equation, and we have 
to solve an incompressible flow problem, V2glII = 0,  with zero normal derivative 
on the boundary, and a condition at  infinity that is specified by matching the 
two a,pproximations and q511 in their common region d < r,, < l / k .  It is seen 
from (5.1) that the required condition at  infinity for the incompressible potential 
+11 is that - 2 ~ k 4  n-i-(1- cos O)J e-Yn r$ sin (to,)  as ro/d+ a. ( 5 . 2 )  
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clearly depend upon the exact geometry of the 
scatterer, but it is very important to observe that the parameter k appears only 
in the boundary condition (5.2) in the specifications for q511, and that the factor 
2 A k & d ( l -  cos 8)s e-iin appearing in (5.2) is merely a multiplicative constant 
that is maintained from the outer extremes of region I1 through to the scattering 
boundary itself. Thus the lc dependence is fixed, and the shape of the body 
affects only the dependence of q511 upon the geometrical variables ro and 8,. 

According to this argument, the scattered field @(x) due to a multipole source 
a t  a point y, closer than a wavelength to the edge, has a far field of the form 

(5.3) 

for kd < 1, kr, < 1, where the function P depends on the geometry of the end 
of the scatterer. The same form of solution holds also for the soft boundary 
condition. The scattered field (5.3) is seen to be similar to that of (3.7) and (3.9) 
for a thin half-plate, and in particular the wave-number dependence is such that 
the intensity law I cc Us given by (3.15) is valid also for the present case of a 
thin plate with a rounded end, or indeed for an end of any shape, provided the 
thickness of the plate and the dimensions of its end section are small compared 
with wavelength. Similarly, the intensity law (3.16) holds for a wedge with 
smoothed end. 

The arguments leading to these conclusions are mere conjectures, these being 
now supported by comparison with two situations for which exact results are 
available. 

The problem of scattering a plane wave by a half-plate of finite thickness that 
occupies the region y, < 0, - d  < y2 < 0, has been solved by Jones (1953). 
This author, in particular, reduces the long wave problem (kd < 1) to that of 
an infinite system of linear equations for a set of numerical coefficients 
A,, A,, A,, ..., that are related to the Fourier coefficients of the potential q5 
across the end face, y, = 0, -d < y2 < 0. 

According to the approach of the present work, on the other hand, a plane 
wave of incident potential 

Precise details regarding 

@(x) w F(y) ( e i k r / r )  k&( 1 - cos 814 as kr = klx] + co, 

q5i (y) = A exp { - ik(y, cos 8 + yz sin O)} 
induces a potential field that is indistinguishable from that of a semi-infinite 
plate of zero thickness, for points in region I (r, = (yi+ y $ t  9 d) ;  in particular 

- 2A(kr,)t n-4( 1 - cos 8)i e-iin sin (48,) +constant, ro Q ~ / k .  (5.4) 

In  order to determine the approximate potential $11 appropriate to region 
(kr, < I ) ,  it remains to solve the simple incompressible flow problem 

V2q5,, = 0 in the %ow, a$,,/an = 0 on the surface, (5.5) 

- ~ , r i s i n ( $ ~ , )  as r , -+a ,  (5.6) 

together with the condition at  large distance that 

to match with (5.4), wherein the constant A,  = 2Ak4 n-4( 1 - cos 8)t  e-si" appears 
simply as a multiplicative constant throughout. 

38 F L M  46 
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It is a routine matter to calculate the harmonic function $11 satisfying (5.5) 
and (5.6) by mea,ns of conformal transformation and one can, in particular, 
readily derive the potential $11 across the end face y, = 0, - d  < yz < 0. A 
comparison with the results of Jones (1953) indicates that  the potential q511 so 
determined has the correct dependence on the variables k, d and 8; further- 
more, a comparison of the numerical coefficients predicts that the constants 
A,, .4,, A,, . . ., of Jones's work have the exact solution 

(5.7) 

in which J denotes a Bessel function. The first few va.lues of (5.7), namely 

A ,  = 0.3481, A, = 0.0543, A ,  = 0.0229, A,  = 0.0130, 

agree convincingly well with the results, 

A ,  M 0-351, A ,  E 0.0559, A ,  E 0.0241, A ,  E 0.0140, 

obtained by Jones by numerical computations. 
A second problem that invites comparison with the present work is that of 

scattering by a pair of parallel thin half-plates given by y, < 0, yz = 0 and 
y1 < 0, yz = - d ,  this being discussed at length by Noble (1958). For the long- 
wave limit (kd < l), the outer approximation $I is the same as before and the 
near-field limit q511 requires a solution of the Laplace equation, with zero normal 
derivative on each plate. Conditions a t  infinity are provided by the asymptotic 
requirements (5.6) 5s r,/d+oO outside the duct; a further condition $rI - 1 as 
r,/d -+ 00 inside the duct is obtained from the estimate 

$ N e-ikul as yl/d --f - 00, 15.8) 

as is readily established from the analysis given by Noble. Thus the form of the 
wave field near the edges is obtained in terms of this straightforward potential 
problem t o  be solved by conformal transformation. Details are unimportant, 
but it suffices to quote the particular result for the edge singularity, namely 

This is in complete agreement with the corresponding result implicit in 
Noble's work (when account is taken of an arithmetical error in the formula on 
p. 41 for r(a)/r(Za) from which a factor e* should be omitted, this having bearing 
on the functions K+(a),  L*(a) that  appear in the analysis). 

It is seen from (5.4) and (5.9) tha,t the edge singularity for the duct has a 
coefficient 2-h times that for a single plate; thus sources near an edge of the duct, 
a t  distances small compared with d, scatter slightly less sound than sources near 
the edge of a single plate. 

Further, i t  is of some significance that the potential, according to  (5.8), 
quickly assumes a plane wave form down the duct a t  distances that are large 
compared withd, but may be small compared with wavelength. By differentiating 
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with respect to source point y, it is clear that the scattered field from any quad- 
rupole is at  most O(k2) ,  whether the axes are perpendicular or parallel to the edge. 
Evidently the region of intensely scattering sources, which is of order ro 5 k-1 

outside the duct, is reduced to r,, 5 d inside the duct. It is natural to anticipate 
that this property will hold also for the circular duct, and this result may have 
some bearing on the relative importance of turbulence sources inside and 
outside a jet exit. 

Although detailed solutions have not been presented here, the methods of 
this section yield explicit results, in the long-wave asymptotic limit kd .g 1,  for 
any geometry such that the corresponding incompressible problem is amenable 
to solution by conformal tmnsformation. The problem of scattering by a 
‘keyhole ’ obstacle, consisting of a wedge with a circular cylinder at its end, falls 
into this category, for example. It has been seen above, in connection with the 
half-plate of finite thickness, that the closed form solution obtained by this 
method has an advantage over the Wiener-Hopf approach, by which an infinite 
system of linear equations results. 

On the other hand, an extension to axisymmetric geometries seems difficult, 
since the form of the outer flow field is not readily determined in an obvious 
way, and the powerful method of conformal transformation is no longer available 
to deal with the near field potential &. Such a problem, concerning the semi- 
infinite circular rod, can be solved by means of the more general Wiener-Hopf 
technique, although the formidable nature of the preliminary manipulations 
and subsequent numerical computations are such that an alternative approach 
could well be worthwhile. 

6. Conclusion 
The distant field due to quadrupole sources is greatly increased by the pre- 

sence of neighbouring scattering bodies. For obstacles that are small compared 
with wavelength, the scattered field is equivalent to an additional dipole, or 
source, according as the surface is hard or soft. In particular, for the prototype 
example o f a  sphere of radius a with a radial quadrupole at  distance ro from the 
centre, the ratio of scattered against incident potential is given by 

1wq5~1 = o(U3/~m, or iwii = o(+v),  (6.1) 

according as the surface is hard or soft. As expected, the enhancement is less 
if the sphere is situated further from the near field of the incident disturbance 
(i.e. as ro increases); if rl - a < a, then the sphere is in the near field of the incident 
quadrupolc, and 

I ? w i /  = O f W a ) ,  or / $ M i /  = 0(1/k2a2). (6.2) 

To interpret this result within the flow noise context, one makes the usual 
identification k z U/lc  to express the wave-number k in terms of typical velocity 
U and length scale 1 associated with the turbulence, where c is the wave speed. 
Thus the potential is increased by the large factor O(l/a M )  for the hard sphere 
and 0(l2/u2M2) for the soft sphere, where M = U/c  is a turbulence Mach number 
and is typically very small. Since the  intensity of the distant sound field is 

38-2 
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proportional to the square of the potential, the U8 law of Lighthill for un- 
bounded flows must be modified to become a U6 law or U4 law for a hard or soft 
sphere. A similar analysis holds for any body of dimensions small compared 
with wavelength. 

For quadrupoles close to, and with axes perpendicular to, the edge of a weclge- 
like body, whose dimension is large compared with wavelength and whose end 
may be smoothed out over a length scale small compared with wavelength, a 
completely different behaviour results. In such a case, the increase in far field 
potential takes the form 

for either the hard or soft boundary condition, where the wedge-like body has 
exterior angle (p /q )  n-, 1 < p / q  < 2. The parameter F has dimension (length)-2+q’P 
and depends upon the source position y and upon details of the geometry. The 
explicit wave-number dependence given by formula (6.3) implies an increase in 
intensity by a factor proportional to U-4+2qlP and the eighth power law is 
replaced by 

I$/q5il = k-2+q’pF(y) (6.3) 

I U4+24’P. (6.4) 

This applies, for example, to the case of a disk of radius a that is large com- 
pared with wavelength; further details are provided in the text for this case 
The analysis applies also to a large disk (ka % I )  of finite thickness d small 
compared with wavelength (kd < I ) .  It applies, for example, to the case of 
quadrupoles near the edge (but not near the corners) of a rectangular box if its 
dimensions are large scale and if its edges are smoothed out on a small scale, 
compared with wavelength. For this geometry p / q  = #, whence I cc U y .  

Finally, it is necessary to examine more closely the implications of infinite 
(or large) velocity induced a t  a sharp (or fairly sharp) edge. For a basic assump- 
tion in the Lighthill acoustic analogy is that the wave field induced by the 
turbulence has but little effect upon the Reynolds stress terms puiuj that are 
represented by incident quadrupole sources. Such an assumption is clearly 
invalid, without further justification, for geometrics with a sharp edge since 
the induced velocities are injinite there: indeed the precise nature of this singu- 
larity has played a key role in the analysis. The tendency towards high velocities 
near an edge will, of course, be controlled by the action of viscosity and it 
remains to show that the region in which viscosity is effective is much sma.ller 
than the near field of the edge, this being made up of distances from the edge 
on a scale much less than a wavelength. 

A length scale I ,  to characterize the region affected by viscosity is obtained 
from the kinematic viscosity v and frequency w = kc, whence 

I ,  = ( v /w) i  ,x (VZ/U)b. 

Thus the model presented herein is useful provided the viscous scale I ,  is very 
much less than a wavelength CZ~U, i.e. 

(U/C) W&J)t  < 1, 

which is certainly the case when the Mach number U / c  is small and the Reynolds 
number Ul/v  is large. Further, the model is then completely self-consistent. 
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For the ‘eddy length’ E represents the distance from the edge a t  which one can 
ma,ke the crude identifications Qij M pU2, w z Ull, and consistency demands 
1 % I,,, which is satisfied if Ullv 9 1. The viscous forces which, on a scale I,, ulti- 
mately reduce the velocity to zero on the body are therefore negligible on the 
scale I ,  which is the scale on which Qi j  has appreciable strength proportional to 
p 112. 

D.G.C. acknowledges the support of a Ministry of Technology grant, ad- 
ministered by the National Gas Turbine Establishment, Pyestock, Hampshire. 

R E F E R E N C E S  

CRIGHTON, D. G. & LEPPINGTON, F. G. 1970 J .  Fluid Mech. 43, 721. 
CURLE, N. 1955 Proc. Roy .  SOC. A 231, 505. 
FFOWCS WILLIAMS, J. E. & HALL, L. H. 1970 J .  Flu id  Mech. 40, 657. 
JONES, D. S. 1953 Proc. Roy .  SOC. A 217, 153. 
LIGHTHILL, M. J. 1952 Proc. Roy.  SOC. A 211, 566. 
MEECHAM, W. C. 1965 J .  AcousticSoc. Am. 37, 516. 
MORSE, P. M. & FESHBACH, H. 1953 Methods of Theoretical Physics. McGraw-Hill. 
NOBLE, B. 1958 Methods based on  the Wiener-Hopf technique. Pergamon. 
POWELL, A. 1960 J .  Acoust. Soc. Am. 32, 982. 
SNEDDON, I. N. 1966 Mixed Boudary Value  Problems in Potential Theory. North-Holland. 


